Drift-diffusion limits of kinetic models for chemotaxis: A generalization
نویسندگان
چکیده
منابع مشابه
Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization
We study a kinetic model for chemotaxis introduced by Othmer, Dunbar, and Alt [22], which was motivated by earlier results of Alt, presented in [1], [2]. In two papers by Chalub, Markowich, Perthame and Schmeiser, it was rigorously shown that, in three dimensions, this kinetic model leads to the classical KellerSegel model as its drift-diffusion limit when the equation of the chemo-attractant i...
متن کاملChemotaxis when Bacteria Remember: Drift versus Diffusion
Escherichia coli (E. coli) bacteria govern their trajectories by switching between running and tumbling modes as a function of the nutrient concentration they experienced in the past. At short time one observes a drift of the bacterial population, while at long time one observes accumulation in high-nutrient regions. Recent work has viewed chemotaxis as a compromise between drift toward favorab...
متن کاملNumerical Simulations of Kinetic Models for Chemotaxis
We present a new algorithm based on a Cartesian mesh for the numerical approximation of kinetic models for chemosensitive movements set in an arbitrary geometry. We investigate the influence of the geometry on the collective behavior of bacteria described by a kinetic equation interacting with nutrients and chemoattractants. Numerical simulations are performed to verify accuracy and stability o...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series B
سال: 2005
ISSN: 1531-3492
DOI: 10.3934/dcdsb.2005.5.319